Pediatric Sleep Patterns Detection from Wrist
Activity Using Random Forests

Hangqi Zeng

Introduction

This research explores the development of a predictive model using wrist-worn accelerometer
data to determine a person’s sleep state. Leveraging datasets from the Healthy Brain Network,
this study will delve into the nuances of sleep onset and wake events, aiming to revolutionize
the understanding of sleep in children.

A total of three data sets will be used in this project, namely train_series.parquet,
test__series.parquet, and train__events.csv.

* The Zzzs train.parquet dataset contains all series to be used as training data. One thing
to note is that each series is a continuous recording of accelerometer data for a single subject
spanning many days. This dataset has a total of 5 columns, and each column represents an
attribute of that accelerometer series. These attributes include series_id - Unique identifier,
step - An integer timestep for each observation within a series, timestamp - A corresponding
datetime with ISO 8601 format %Y-%m-%dT%H:%M:%S%z, anglez, z-angle is a metric derived
from individual accelerometer components that is commonly used in sleep detection, and refers
to the angle of the arm relative to the vertical axis of the body, as well as enmo. ENMO is the
Euclidean Norm Minus One of all accelerometer signals, with negative values rounded to zero. *
The test_series.parquet dataset contains series to be used as the test data, containing the same
fields as above. I will predict event occurrences for series in this file. * The train__events.csv
file is a complemented dataset that logs specific sleep events such as sleep onset and wake
times. This dataset is pivotal in understanding the transitional moments in sleep and serves
as a key component in training and refining the predictive models. To be more specific, there
are a total of 5 columns, and each column(except the first column, which is just a column of
series_id of 12 digits combination of numbers and characters) represents an unique identifier
for each series of accelerometer data in Zzzs train.parquet. These attributes include basic
statistics such as night - An enumeration of potential onset / wakeup event pairs. At most
one pair of events can occur for each night, and event - The type of event, whether onset or
wakeup, as well as step and timestamp, which is the recorded time of occurence of the event
in the accelerometer series.

https://healthybrainnetwork.org/

The sleep onset and wakeup timeline plot and the boxplot of sleep duration by day of week
motivate the exploration into the sleep patterns. Therefore, central to this research is the
question: How can we leverage a machine learning model, trained on wrist-worn
accelerometer data, to effectively discern and predict individual sleep patterns
and disturbances? Addressing this question can help interpret accelerometer data and have
the potential to inform interventions and strategies in child psychology and sleep medicine,
offering a new lens through which we can view and understand sleep.

= Sleep Onset and Wakeup Timeline Box Plot of Sleep Duration by Day of Week
2 1500
5 & . day_of week
g % 200 ° * : : E Monday
%5 1000 event E i . . 3 . ES Tuesday
g 5 . Wednesday
5 onset =2
£ « ® 100 . Thursday
£ 500 N kil o wakeup =1 .
g *g““ “"# W"‘i—“’ﬂ . "-i‘“’!’nﬁ,m* i g Dn - Friday
8 s 3 50 E3 saturday
:,D_J 0 o o * : . E Sunday
£
£ & 3 > 3))))))) ¥
= »Q’/Q &/ﬁ @/0 @0 ooe?’ S &L \@8’ {(v\\e@ \0@7’ §5® >
S S S S N & 9
Date Day of the Week
Figurel Figure 2

Data Preparation & Feature Engineering: The dataset was cleaned thoroughly, prepared
for modeling, addressing missing values through deletion. Feature selection was based on
the exploratory analysis towards the data distribution patterns, correlation analysis and also
the domain knowledge that the wearables position and the sleep hour habits are influential
factors to a person’s sleep patterns. Based on these, several key features were extracted
from the accelerometer data, including anglez and enmo metrics, which are indicators of the
wearer’s movement intensity and orientation, step, event, hour and series_id. These must
be crucial factors to be included in the model. Besides, normalization/standardization of data
was implemented after exploratory data analysis but before model training to ensure equal
contribution of each feature, preventing bias towards variables with larger magnitudes.

From the explortary data analysis on the train_events dataset, the sleep onset and wakeup
timeline plot shows as time advanced from late 2017 through to July 2019[Figurel], the ob-
served sleeping patterns exhibit a notable degree of stability and consistency. Predominantly,
the awakening time clusters around the 500-minute mark post-midnight, which translates to
8:20 AM. In contrast, the commencement of sleep predominantly spans from 1320 to 1440 min-
utes after midnight, stretching slightly into the early hours and encapsulating the timeframe
from 10:00 PM to 0:30 AM. These findings are in harmonious alignment with conventional
sleep schedules typically adhered to, reinforcing their validity within the context of established
sleep norms. This detected sleep pattern motivate the model development.

There are some findings from data wrangling as well. Exploring weekly patterns in sleep du-
ration by classifying the data according to each day of the week is also a worthwhile task.
The boxplot[Figure2] revealed that sleep durations are generally similar across weekdays and
weekends, with two notable exceptions. Saturday showed a marginally longer sleep duration
compared to other days, while Thursday emerged as the day with the least amount of sleep.
This observation aligns with common expectations, as Thursdays, being mid-week, often in-
volve intensive workloads in anticipation of the weekend, potentially leading to reduced sleep.
Conversely, Saturdays provide an opportunity for extended rest and recuperation, especially
given the possibility of waking up later on Sunday mornings. However, sleep duration on
Sundays does not significantly extend, likely due to the need to wake up early on Mondays.
But there’s no much variation among days of week, we can dismiss the day of week factor in
our model development.

The average sleep duration by hour of onset plot[AppendixB: Figure5] clearly illustrates a
distinct trend: as the bedtime shifts to a later hour, there is a corresponding decrease in
the total duration of sleep. This pattern suggests that later sleep onset times are often not
compensated by equivalent delays in waking up, resulting in shorter overall sleep periods.

The density plot for sleep onset and wake-up times over time[AppendixB: Figure6] clearly
reveals distinct peak periods for each. Wake-up times predominantly peak between 6 to 7
AM, whereas sleep onset times are more broadly distributed, ranging from 10 PM to an hour
past midnight. This finding aligns with our previous plots depicting sleep onset and wake-up
timelines.

Model Choice: After researching many related literature, the study employs the Random
Forest algorithm, selected for its robust performance in complex, high-dimensional classifica-
tion tasks, and widely used in sleep detection tasks. This choice is preferable over alternatives
like logistic regression or support vector machines due to the algorithm’s capability to handle
non-linear relationships and provide insights into feature importance, which is crucial for the
analysis. I started the codes from scratch in my own way, combing both R and Python tools,
implemented a fine-tuned data model, and evaluated in details.

Validation and Testing: The model was trained on the train_series dataset and validated
using a subset of the data. The final model was then tested on the test_series dataset
to predict sleep states. A confidence score metric quantifying the model’s certainty in its
predictions about specific sleep-related events, such as the onset or cessation (wakeup) of
sleep was derived from model’s probability predictions. It takes the highest probability from
the set of probabilities predicted for each data point, reflecting the model’s most confident
prediction.

Results

The model achieves peak accuracy with a small number of predictors. This indicates that a
few predictors may be highly informative and sufficient to capture the necessary pattern in

the data for accurate predictions. As more predictors are added beyond the optimal point,
accuracy declines, which can be indicative of overfitting. The model starts to learn the noise
in the training data rather than the underlying pattern. In this case, using 3 predictors might
be the optimal complexity for the model.

Attemptl: max experimental ntree Error Rate Over mtry = 2 and 3 Attempt2: ntree=335
0.020

§ 0.982- ° & 0.982-
@ < ko]
= @ k=]
'S 0.981- 50019 'S 0.981-
= = | as.factor(mtr >
I& i ntree: 335 (mtry) ‘3
9 0080~ 2 Error: 0.0173 = my=3 O (.980-
8 cln mtry =2 S.)/
> & 0018 =
© 0.979- L © 0.979-
3 8 3
g ¢

0.978- 0017 0.978-

1 2 3 4 5 100 200 300 400 500 1 2 3 4 5
#Randomly Selected Predictors Number of Trees #Randomly Selected Predictors

Figure3.1 Figure4 Figure3.2

I started training the model with 100 trees and tuning the number of predictors to be sampled
between 1 and 5 with 1 as the increment. It turned out that randomly sampling 3 predictors
and predicting 335 trees maximized and stabilized the accuracy of model prediction, which is
0.9827, and in this setting, the out-of-bag error rate is 0.0173.

The ROC curve for the model[AppendixB: Figure7] truly looks like a nearly perfect upper
triangle, it suggests that the model has near-perfect classification accuracy. This might indicate
some form of data leakage or overfitting. So I checked precision, recall, F'1 score, and confusion
matrices to see whether this might be an imbalanced dataset. However, the accuracy is at
98.34%, Kappa is 0.9669, both recall and specificity are above 98%, precision and negative
predictive values are high, balanced accuracy indicating consistent performance, F1 score is at
around 0.98. High performance across all these metrics does not suggest a pressing need for
sampling methods to address class imbalance.

Lastly, I applied an evaluation metric for event detection in time series and video namely
Event Detection Average Precision(EDAP) to the testing set predictions, and got a high sore.
Its IOU threshold with tolerance can be replaced. The timestamp error tolerance are custom
defined, [12, 36, 60, 90, 120, 150, 180, 240, 300, 360] for onset and same for wakeup event. For
each event x tolerance group, the Average Precision (AP) score is calculated, which is the area
under the precision-recall curve generated by decreasing confidence score thresholds over the
predictions. Multiple AP scores are first averaged over tolerance, then over event to produce
a single overall score.

The feature importance plot[AppendixB: Figure8] shows the top3 most influential features were
identified as hour of the day, enmo, and anglez, indicating the significance of movement
intensity, orientation, and time in determining sleep states. The hour is most influential
makes sense since the sleeping patterns are associated with the time hour for sure, and usually
a rountine for many people.

https://www.kaggle.com/code/metric/event-detection-ap/notebook

The final submission file resembles the example in Appendix C, which is the results tested
on a small dataset, where each series has its own onset and wakeup timepoints (indicated by
‘step’) along with a prediction confidence score. The sample results are also consistent with our
knowledge, lower confidence score, more likely for a false report. For instance, the indicated
potential onset events during noon and afternoon have pretty low confidence score. It is the
fact that few people go to bed such early but may get up in the afternoon. One method
to determine the confidence score is provided, in addition to this, filtering methods are also
experimented in this project, which can be employed to detect only those events where the
time gap between onset and wakeup exceeds a certain number of hours (e.g., 6 hours; this
threshold can be adjusted based on needs), or by requiring that the confidence score for either
onset or wakeup is above 60%. If these criteria are not met, it is likely that no event occurred
within the 2.5-hour recording period of that series.

Conclusion

This study successfully demonstrates the potential of using accelerometer data in sleep state
detection. Several methods and parameters desgined for the wearables settings are applied,
such as the timestamp error tolerance, etc. The high accuracy, AUC scores, event average
precision, and recall achieved by the Random Forest model highlight its effectiveness. An
exploration into the GGIR package specially for accelerometer data is provided as well, but
in this study, even I took methods to transform raw data parquet into csv, the GGIR has
very strict requirements for data format. My implementation without using GGIR is more
suitable for these datasets. However, a critical limitation of the current model, which employs
a random forest algorithm, pertains to its treatment of data. The model operates under the
premise that each data point, or timepoint, is an isolated event, devoid of temporal correlation
with preceding or subsequent data points. This assumption is a significant departure from
the inherently sequential and interdependent nature of sleep patterns. In the realm of sleep
studies, where temporal sequences and the continuity of data play pivotal roles, this approach
might oversimplify complex biological processes. Therefore, the model may not fully capture
the nuanced dynamics of sleep transitions. To enhance the model’s predictive accuracy and
clinical relevance, future research should focus on incorporating techniques that recognize and
integrate the temporal correlations inherent in sleep patterns. Furthermore, future work could
include the application of this model to a broader dataset and exploring other combination
techniques (eg. RNN4+LSTM) for potential accuracy enhancement. Throughout this research,
privacy and data security standards were maintained, and strict adherence to ethical guidelines
was ensured to prevent any data misuse, underscoring its sole use in enhancing pediatric
healthcare research and practices.

References

1. Cole, R. J., Kripke, D. F.; Gruen, W., Mullaney, D. J., & Gillin, J. C. (1992).
Automatic sleep/wake identification from wrist activity. Sleep, 15(5), 461-469.
https://doi.org/10.1093/sleep/15.5.461

2. de Zambotti, M., Cellini, N.,; Goldstone, A., Colrain, I. M., & Baker, F. C. (2019).
Wearable Sleep Technology in Clinical and Research Settings. Medicine and science in
sports and exercise, 51(7), 1538-1557. https://doi.org/10.1249/MSS.0000000000001947

3. Nathalia Esper, Maggie Demkin, Ryan Hoolbrok, Yuki Kotani, Larissa Hunt, Andrew
Leroux, Vincent van Hees, Vadim Zipunnikov, Kathleen Merikangas, Michael Milham,
Alexandre Franco, Gregory Kiar..(2023). Child Mind Institute - Detect Sleep States.
Kaggle. https://kaggle.com/competitions/child-mind-institute-detect-sleep-states

4. Sundararajan, K., Georgievska, S., Te Lindert, B. H. W., Gehrman, P. R., Ramautar, J.,
Mazzotti, D. R., Sabia, S., Weedon, M. N., van Someren, E. J. W., Ridder, L., Wang, J.,
& van Hees, V. T. (2021). Sleep classification from wrist-worn accelerometer data using
random forests. Scientific reports, 11(1), 24. https://doi.org/10.1038/s41598-020-79217-

X

Appendix

Appendix A: Additional Dataset Details
Detailed Dataset Information

Train Events (train_events.csv)

Accessible through this link, this dataset comprises sleep logs from accelerometer devices,
documenting onset and wake events. It contains five columns, including night (enumeration
of potential onset/wakeup event pairs), event (type of event), step, and timestamp.

Training Data (Zzzs_train.parquet)

Available here, this dataset includes continuous accelerometer recordings. It features metrics
like series_id, step, timestamp, anglez, and enmo, the latter two being crucial metrics
for sleep detection as described by the GGIR package.enmo (Euclidean Norm Minus One with
negative values rounded to zero) is an acceleration metric describing physical activities. anglez
is the angle of the arm relative to the vertical axis of the body.

https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/data?select=train_events.csv
https://www.kaggle.com/datasets/carlmcbrideellis/zzzs-lightweight-training-dataset-target?select=Zzzs_train.parquet
https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html#4_Inspecting_the_results

Test Data (test_series.parquet)

This dataset, used for testing, mirrors the structure of the training data. It can be accessed
here.

Appendix B: Additional Plots

Average Sleep Duration by Hour of Onset

150

10
0 5 10 15 20

Hour of Sleep Onset
Figure5

avg_duration

160
120
80

o

o

Average Sleep Duration (minutes)

https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/data?select=test_series.parquet

0.5

0.4

Density

0.2

0.1

0.0

10
Hour

Figure6

15

20

event
onset

wakeup

ROC Curve, AUC = 0.996535

o
- | I~
0]
g
2 ©
> o
Q .
§ o -
N
o
o |
© 5 | | |
15 1.0 0.5 0.0
Specificit
%igure?y

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 148 2

1 3 149

Accuracy : 0.9834
95% CI : (0.9618, 0.9946)
No Information Rate : 0.5
P-Value [Acc > NIR] : <2e-16
Kappa : 0.9669

Mcnemar's Test P-Value : 1

Sensitivity : 0.9801
Specificity : 0.9868

Pos Pred Value : 0.9867

Neg Pred Value : 0.9803
Prevalence : 0.5000
Detection Rate : 0.4901
Detection Prevalence : 0.4967

Balanced Accuracy : 0.9834

'Positive' Class : O

[1] "Precision: 0.986666666666667"
[1] "Recall: 0.980132450331126"

[1] "F1 Score: 0.983388704318937"

Feature Importance from Random Forest Model

enmo I

o
>

T anglez I
(¢)]
i

step I

series_id I

0 200 400
MeanDecreaseGini
Figure8

Appendix C: Tests on A Small Sample Data

A tibble: 8 x 5

row_id series_id step event score
<dbl> <chr> <dbl> <chr> <dbl>
1 0 038441c925bb 124 onset 0.958
2 1 038441c925bb 922 wakeup 0.901
3 2 038491c925aa 315 onset 0.731
4 3 038491c92baa 478 wakeup 0.949
5 4 03d92c9f6f8a 730 onset 0.2
6 5 03d92c9f6f8a 724 wakeup 0.955

10

7 6 0402a003dae9 842 onset 0.233
8 7 0402a003dae9 839 wakeup 0.949

Appendix D: Code Details

#- Load libraries
library(tidyverse)
library(arrow)
library(skimr)
library(dplyr)
library(ggplot2)
library(lubridate)
library(caret)
library(randomForest)
library (patchwork)
library (pROC)

library (purrr)

#- Read train_events and modify timestamp with lubridate

#- Read events
events <- read_csv("train_events.csv") %>%
mutate(dt = as_datetime(timestamp)) %>%
mutate(dt = dt - hours(4)) %>% mutate(hr = hour(dt)) %>%
select(-timestamp)
head (events)
#- Events counts
events %> count(event)
#- Sleep onset and wakeup timeline
Merge onset and wakeup data on dates
timeline data <- events %>Y%
filter(event %inj c("onset", "wakeup")) %>%
group_by(date = as.Date(dt)) %>%
mutate(time_minutes = hour(dt) * 60 + minute(dt))

Create a scatter plot
plotl <- ggplot(timeline_data, aes(x = date, y = time_minutes, color = event)) +
geom_point(shape = 3, alpha = 0.2) +
labs(title = "Sleep Onset and Wakeup Timeline",
x = "Date",
y = "Time of Day (minutes after midnight)") +
theme minimal() +

11

theme (axis.text.x = element_text(angle = 45, hjust = 1))

Calculate sleep durations and onset hour
pivot_data <- events %>/
group_by(series_id, night) %>%
summarize(duration_minutes = (max(step) - min(step)) / 60,
onset_hour = hour(min(dt)),.groups = 'drop')

Calculate average sleep duration by hour of onset
average_duration_by_hour <- pivot_data %>’

group_by (onset_hour) %>

summarize (avg_duration = mean(duration_minutes),.groups = 'drop')

Create a bar plot
plot2 <- ggplot(average_duration_by_hour, aes(x = onset_hour, y = avg_duration, fill = avg
geom_bar(stat = "identity") +
labs(title = "Average Sleep Duration by Hour of Onset",
x = "Hour of Sleep Onset",
y = "Average Sleep Duration (minutes)") +
theme minimal() +
scale_fill_gradient(low = "red", high = "green")
Order days of the week
ordered_days <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sun
Extract day of week and calculate sleep duration in minutes
Calculate sleep duration in minutes and extract day of the week
pivot_data <- events %>/
group_by(series_id, night) %>%
summarize(duration_minutes = (max(step) - min(step)) / 60,
min_datetime = min(dt),.groups = 'drop') %>%
mutate(day_of_week = factor(format(min_datetime, "%A"), levels = ordered_days))

Create a box plot
plot3 <- ggplot(pivot_data, aes(x = day_of_week, y = duration_minutes, fill = day_of_week)
geom_boxplot () +
labs(title = "Box Plot of Sleep Duration by Day of Week",
x = "Day of the Week",
y = "Sleep Duration (minutes)") +
theme minimal() +
theme (axis.text.x = element_text(angle = 45, hjust
#- Distribution of wakeup and Distribution of onset
Filter the data for "wakeup" and "onset" events

1))

12

events_wakeup <- events),>), filter(event == "wakeup")
events_onset <- events %>J, filter(event == "onset")

Combine the filtered data into a single data frame
combined_events <- rbind(events_wakeup, events_onset)

Create the plot with density lines for "wakeup" and "onset" events

plot4 <- ggplot(combined_events, aes(x = hr, color = event, fill = event)) +
geom_density(alpha = 0.5) +
labs(x = "Hour", y = "Density") +
scale_color_manual(values = c("wakeup" = "red", "onset" = "blue")) +
scale_fill_manual(values = c("wakeup" = "red", "onset" = "blue")) +
theme_minimal ()

Calculate the number of events per series
events_per_series <- events %>’
group_by(series_id) %>%
summarize (num_events = n())

Create a histogram for the distribution of events per series
plots <- ggplot(events_per_series, aes(x = num_events)) +
geom_histogram(bins = 30, fill = "orange", color = "black", alpha = 0.7) +

labs(title = "Distribution of Number of Events per Series",
x = "Number of Events",
y = "Number of Series") +

theme_minimal ()
Most series exhibit approximately 48 events. However, there are a few series with a sign
#- Detect NA in events
events_na <- events 7>}, group_by(series_id,step) %>}, filter(is.na(step))
events_na
num_na <- length(unique(events_na$series_id))
na_id <- unique(events_na$series_id)
num_na
na_id
Steps containing records with 'NA' (not available) were identified as not precise enough
#- Series_id without NA events
all_id <- unique(events$series_id)
nna_id <- setdiff(all_id,na_id)
nna_id
In this study, steps containing records with 'NA' (not available) were identified as not
#- Remove two truncated event series

13

trunc <- c("31011ade7c0Oa","a596ad0b82aa")

nna_id <- setdiff(nna_id,trunc)

df _nna <- tibble(nna_id) %>, rename(series_id = nna_id)
plotl <- plotl + labs(caption = "Figurel")+

theme (plot.caption = element_text(hjust = 0.5))
plot3 <- plot3 + labs(caption = "Figure 2")+
theme (plot.caption = element_text(hjust = 0.5))

motivate_plot <- plotl + plot3
plot_layout(nrow = 2)

motivate_plot

#- Read training data

train <- read_parquet('Zzzs_train.parquet')

head(train)

nna_train <- right_join(train,df_nna)

nna_event <- right_join(events,df_nna)

train_new <- left_join(nna_train,nna_event)

train_new_full <- right_join(nna_train,nna_event)

head(train_new_full)

training_data <- train_new_full %>7
select(-timestamp,-event,-dt,-night)

head(training_data)

#- Read testing data

test_old <- read_parquet("test_series.parquet")

Generate a few random data to enlarge the test_series, the original one only has 3 uniqu

set.seed(123)
num_rows <- 150
random_data <- data.frame(
series_id = rep("038441c925bb", num_rows),
step = 0:(num_rows-1),
timestamp = seq(from = ymd_hms("2023-12-13T22:30:00-0400"),
by = "5 sec", length.out = num_rows),
anglez = runif(num_rows, min = 0, max = 5), # Random values between 0 and 5
enmo = runif(num_rows, min = 0, max = 0.05) # Random values between O and 0.05

Convert timestamps to character
random_data$timestamp <- format(random_data$timestamp, format="7Y-%m-%dT%H:%M:%S-0400")

14

test <- rbind(test_old, random_data)

random_data <- data.frame(
series_id = rep("038491c925aa", num_rows),
step = 0:(num_rows-1),
timestamp = seq(from = ymd_hms("2020-10-13T23:45:00-0300"),
by = "5 sec", length.out = num_rows),
anglez = runif(num_rows, min = 0, max = 5), # Random values between 0 and 5
enmo = runif(num_rows, min = 0, max = 0.05) # Random values between 0 and 0.05

Convert timestamps to character
random_data$timestamp <- format(random_data$timestamp, format="7)Y-%m-%dT%H:%M:%S-0500")

test <- rbind(test, random_data)

random_data <- data.frame(
series_id = rep("038491c925aa", num_rows),
step = 0:(num_rows-1),
timestamp = seq(from = ymd_hms("2021-02-13T02:36:00-0400"),
by = "5 sec", length.out = num_rows),
anglez = runif(num_rows, min = 0, max = 5), # Random values between 0 and 5
enmo = runif(num_rows, min = 0, max = 0.05) # Random values between O and 0.05

Convert timestamps to character
random_data$timestamp <- format(random_data$timestamp, format="7Y-%m-%dT%H:%M:%S-0500")
test <- rbind(test, random_data)

test <- test %>V
mutate (dt

as_datetime(timestamp)) %>%
mutate(dt = dt - hours(4)) %»>%

mutate (hr = hour(dt)) %>%

mutate(step = hr*60+step) %>%
select(-timestamp,-dt)

head(test)

set.seed(123)

split <- createDataPartition(training_data$awake, p = 0.8, list = FALSE)
training_set <- training_datalsplit,]

15

training set$awake <- as.factor(training_set$awake)

testing_set <- training datal[-split,]

testing_set$awake <- as.factor(testing_set$awake)

preprocessing_method <- "standardize" # or "normalize"

preprocess_params <- preProcess(training set, method = ifelse(preprocessing_method == "st
saveRDS (preprocess_params, file = "preprocess_params.rds")

preprocessed_training_set <- predict(preprocess_params, training_set)

Initialize a data frame to store results
results_df <- data.frame(ntree = integer(), mtry = integer(), O0BError = numeric())

Define the range for mtry and ntree
mtry_range <- seq(l, ncol(preprocessed_training_set) - 1, by=1) # Full range for predicto
ntree_range <- seq(100, 550, by=5) # range for ntree

Loop over mtry and ntree values
for (mtry in mtry_range) {
for (ntree in ntree_range) {
set.seed(123)
model <- randomForest(awake ~ ., data = preprocessed_training_set, mtry = mtry, ntree

Extract 00B error rate
00BError <- model$err.rate[nrow(model$err.rate), "00B"]

Store results
results_df <- rbind(results_df, data.frame(ntree = ntree, mtry = mtry, O00BError = 0OOBE

Check if results_df is empty or has NA values

if (nrow(results_df) == 0 || any(is.na(results_df$00BError))) {
stop("No data to plot. Check the random forest model training.")

b

Plot accuracy vs. mtry (plot accuracy for different mtry at a fixed ntree)

Calculate accuracy from the 00B error rate

results_df$Accuracy <- 1 - results_df$00BError

accuracy_plot <- ggplot(subset(results_df, ntree == 550), aes(x = mtry, y = Accuracy)) +
geom_line() +
geom_point () +
labs(title = "Attemptl: max experimental ntree",

16

X "#Randomly Selected Predictors",
y = "Accuracy (Cross-validation)")
print (accuracy_plot)

Filter the results for mtry = 2 and mtry = 3
filtered_df <- results_df [results_df$mtry %in’ c(2, 3),]

Find local minima for each mtry group

local_minima <- filtered_df %>7
group_by (mtry) %>%
slice(which(diff(sign(diff (00BError))) == 2) + 1) %>%
ungroup ()

specific_minima <- local_minimal[5,]

label_point <- data.frame(
ntree = 335,
0O0BError = 0.01732673,
label = "ntree: 335\nError: 0.0173")

Plot 00B error rates for mtry = 2 and mtry = 3
oob_error_plot <- ggplot(filtered_df, aes(x = ntree, y = 00BError, color = as.factor(mtry)
geom_smooth() +

geom_point(data = specific_minima, aes(x = ntree, y = 00BError), color = "blue", size =
geom_text(data = label_point, aes(x = ntree, y = 00BError, label label), nudge_y = 0.C
xlab("Number of Trees") +

ylab("Out-of-Bag Error Rate") +

ggtitle("Error Rate Over mtry = 2 and 3") +
scale_color_manual(values = c("red", "yellow"), labels = c("mtry

3“, "mtry - 211)) +
theme_minimal ()

print(oob_error_plot)
results_df$Accuracy <- 1 - results_df$00BError
accuracy_plot2 <- ggplot(subset(results_df, ntree == 335), aes(x = mtry, y = Accuracy)) +
geom_line() +
geom_point() +
labs(title = "Attempt2: ntree=335",
x = "#Randomly Selected Predictors",

y = "Accuracy (Cross-validation)")
print(accuracy_plot2)
accuracy_plot <- accuracy_plot+labs(caption = "Figure3.1")+theme(plot.caption = element_te
oob_error_plot <- oob_error_plot+labs(caption = "Figure4")+theme(plot.caption = element_te

17

accuracy_plot2 <- accuracy_plot2+labs(caption = "Figure3.2")+theme(plot.caption = element_

hyperparam_plot <- accuracy_plot+oob_error_plot+accuracy_plot2
plot_layout(nrow = 2)

hyperparam_plot

preprocessed_training_set$awake <- as.factor(preprocessed_training set$awake)

model <- randomForest(awake ~ ., data = preprocessed_training_set, ntree = 335, mtry = 3)

saveRDS (model, file = "ReducRFmodel.rds")

Calculate training accuracy

confusion_matrix <- model$confusion

training_accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)

print (confusion_matrix)

print(paste("Training Accuracy:", training_accuracy))

oob_error <- model$err.rate[nrow(model$err.rate), "0OO0B"]

training_oob_accuracy <- 1 - oob_error

print(paste("00B Error Rate:", oob_error))

print(paste("Training 00B Accuracy:", training_oob_accuracy))

preprocess_params <- readRDS(file = "preprocess_params.rds")

Apply the same preprocessing to the test data

preprocessed_testing_set <- predict(preprocess_params, testing_set)

Ensure that 'predict' function returns probabilities

testing_set_probs <- predict(model, preprocessed_testing_set, type = "prob")

Extract probabilities for the positive class ('l' is the positive class)

positive_class_probs <- testing_set_probs[, "1"]

Calculate ROC object

roc_obj <- roc(preprocessed_testing_set$awake, positive_class_probs)

Calculate the AUC

auc_value <- auc(roc_obj)

print(auc_value)

Plot the ROC curve along with AUC

plot(roc_obj, main=paste("ROC Curve, AUC =", round(auc_value, 6)))

write.csv(testing_set, "testing_set.csv", row.names = FALSE)

write.csv(testing_set_probs, "testing_set_probs.csv", row.names = FALSE)

Extracting predicted class labels with a threshold. I use 0.5 here
predicted_labels <- ifelse(testing_set_probs[, "1"] > 0.5, 1, 0)

Confusion Matrix
confusionMatrix <- confusionMatrix(factor(predicted_labels), factor(preprocessed_testing_s

Printing the Confusion Matrix
print(confusionMatrix)

18

Precision, Recall, and F1 Score

precision <- posPredValue(factor(predicted_labels), factor(preprocessed_testing_set$awake)
recall <- sensitivity(factor(predicted_labels), factor(preprocessed_testing_set$awake))
f1_score <- 2 * ((precision * recall) / (precision + recall))

Printing the metrics
print(paste("Precision:", precision))
print(paste("Recall:", recall))
print(paste("F1 Score:", f1_score))
Extract feature importance
importance <- importance(model)
colnames (importance)
feature_importance <- data.frame(
Feature = rownames (importance),
Importance = importance[, "MeanDecreaseGini"]
)
Plot using ggplot2
rf_feature_importance_plot <- ggplot(feature_importance, aes(x = reorder(Feature, Importan
geom_bar(stat = "identity") +
coord_flip() + # Flips the axes for horizontal bars
xlab("Feature") +
ylab("MeanDecreaseGini") +
ggtitle("Feature Importance from Random Forest Model") +
theme_minimal ()
preprocess_params <- readRDS(file = "preprocess_params.rds")
Apply the same preprocessing to the test data
preprocessed_test <- predict(preprocess_params, test)
Predict probabilities
This returns a matrix with probabilities for each class
prob_predictions <- predict(model, newdata = preprocessed_test, type = "prob")

Determine the predicted class based on the higher probability

And extract the corresponding confidence score

test$predicted_event <- apply(prob_predictions, 1, function(x) names(x) [which.max(x)])
test$confidence_score <- apply(prob_predictions, 1, max)

Prepare submission data frame and Write
submission <- test %>%
select(series_id, step, predicted_event, confidence_score)
write.csv(submission, "submission.csv", row.names = FALSE)
Predict probabilities

19

prob_predictions <- predict(model, newdata = preprocessed_test, type = "prob")
Add predicted probabilities to the test data

test$onset_confidence <- prob_predictions[,"1"]

test$wakeup_confidence <- prob_predictions[,"0"]

Determine the most likely onset and wakeup for each series_id
For each series_id, find the step with the highest confidence for onset and wakeup
final_selection <- test %>
group_by(series_id) %>%
summarize (
onset_step = steplwhich.max(onset_confidence)],
onset_score = max(onset_confidence),
wakeup_step = stepl[which.max(wakeup_confidence)],
wakeup_score = max(wakeup_confidence)
) B>%
ungroup ()

Reshape the data for submission
final submission <- final_selection %>
select(series_id, onset_step, onset_score, wakeup_step, wakeup_score) %>/
pivot_longer(
cols = c(onset_step, wakeup_step),

names_to = "event_type",

values_to = "step"
) ">
mutate(

event = ifelse(event_type == "onset_step", "onset", "wakeup"),

score = ifelse(event_type == "onset_step", onset_score, wakeup_score)
) %>

select(-event_type, -onset_score, -wakeup_score)

Assign row_id

final submission <- final submission %>%
mutate(row_id = row_number() - 1) %>%
select(row_id, everything())

Extract the mean values used for centering
step_mean <- preprocess_params$mean["step"]

Write submission file
write.csv(final_submission, "final submission.csv", row.names = FALSE)

20

Filter function
Define feature columns used in the model

feature_cols <- c("series_id", "step", "anglez", "enmo", "hr")

Loop over each series ID
unique_series_ids<-unique(preprocessed_test$series_id)

for
#

HOoH OH HF H K HH K HFHHHEH K HHHEHHEH B H R

+*

3}

final_

(series_id in unique_series_ids) {

Include 'step' and oth

series_data <- preprocessed_test >/ filter(series_id == series_id)

Predict events
preds <- predict(model, newdata = series_datal[feature_cols])

Detect sleep onsets and wakeups

pred_changes <- c(FALSE, diff(preds) != 0)

pred_onsets <- series_data$step[preds == 1 & pred_changes]
pred_wakeups <- series_data$step[preds == 0 & pred_changes]

Filter and score events
valid_periods <- which(pred_wakeups - pred_onsets >= 12 * 30)
if (length(valid_periods) > 0) {
for (i in valid_periods) {
onset_step <- pred_onsets[i]
wakeup_step <- pred_wakeups[i]

Adjust threshold as

score <- mean(series_data$onset_confidence[onset_step:wakeup_step], na.rm =

Add to final submission

final_submission <- rbind(final_submission, data.frame(

series_id = series_id,
onset_step = onset_step,
wakeup_step = wakeup_step,
score = score

)

submission

library(reticulate)
use_condaenv("env", required = TRUE)
"""Event Detection Average Precision

An average precision metric for event detection in time series and

video.

21

nnn

import numpy as np

import pandas as pd

import pandas.api.types

from typing import Dict, List, Tuple

class ParticipantVisibleError (Exception) :
pass

Set some placeholders for global parameters
series_id_column_name = None

time_column_name = None

event_column_name = None

score_column_name = None
use_scoring_intervals = None

def score(
solution: pd.DataFrame,
submission: pd.DataFrame,
tolerances: Dict[str, List[float]],
series_id_column_name: str,
time_column_name: str,
event_column_name: str,
score_column_name: str,
use_scoring_intervals: bool = False,
) —> float:
"""Event Detection Average Precision, an AUCPR metric for event detection in
time series and video.

This metric is similar to IOU-threshold average precision metrics commonly
used in object detection. For events occuring in time series, we replace the
I0U threshold with a time tolerance.

Submissions are evaluated on the average precision of detected events,

averaged over timestamp error tolerance thresholds, averaged over event
classes.

22

Detections are matched to ground-truth events within error tolerances, with
ambiguities resolved in order of decreasing confidence.

Detailed Description

Evaluation proceeds in four steps:

1. Selection - (optional) Predictions not within a series' scoring
intervals are dropped.

2. Assignment - Predicted events are matched with ground-truth events.

3. Scoring - Each group of predictions is scored against its corresponding
group of ground-truth events via Average Precision.

4. Reduction - The multiple AP scores are averaged to produce a single
overall score.

Selection

With each series there may be a defined set of scoring intervals giving the
intervals of time over which zero or more ground-truth events might be
annotated in that series. A prediction will be evaluated only if it falls
within a scoring interval. These scoring intervals can be chosen to improve
the fairness of evaluation by, for instance, ignoring edge-cases or
ambiguous events.

It is recommended that, if used, scoring intervals be provided for training
data but not test data.

Assignment

For each set of predictions and ground-truths within the same “event x
tolerance x series_id ~ group, we match each ground-truth to the
highest-confidence unmatched prediction occurring within the allowed
tolerance.

Some ground-truths may not be matched to a prediction and some predictions
may not be matched to a ground-truth. They will still be accounted for in
the scoring, however.

Scoring

Collecting the events within each “series_id", we compute an Average

23

Precision score for each “event x tolerance’ group. The average precision
score is the area under the (step-wise) precision-recall curve generated by
decreasing confidence score thresholds over the predictions. In this
calculation, matched predictions over the threshold are scored as TP and
unmatched predictions as FP. Unmatched ground-truths are scored as FN.

Reduction

The final score is the average of the above AP scores, first averaged over
tolerance, then over event.

Parameters

solution : pd.DataFrame, with columns:
“series_id_column_name”~ identifier for each time series
“time_column_name” the time of occurence for each event as a numeric type
“event_column_name” class label for each event
The solution contains the time of occurence of one or more types of
event within one or more time series. The metric expects the solution to
contain the same event types as those given in “tolerances’.
When “use_scoring_intervals == True , you may include “start”™ and “end’
events to delimit intervals within which detections will be scored.
Detected events (from the user submission) outside of these events will
be ignored.

submission : pd.DataFrame, with columns as above and in addition:
“score_column_name the predicted confidence score for the detected event

tolerances : Dict[str, List[float]]

Maps each event class to a list of timestamp tolerances used
for matching detections to ground-truth events.

use_scoring_intervals: bool, default False

24

Whether to ignore predicted events outside intervals delimited
by “'start'® and “'end'" events in the solution. When “False~,
the solution should not include "'start'™ and '
See the examples for illustration.

end'”~ events.

Returns
event_detection_ap : float
The mean average precision of the detected events.

Examples
Detecting "~ 'pass'® events in football:
>>> column_names = {

'series_id_column_name': 'video_id',
'time_column_name': 'time',
'event_column_name': 'event',
'score_column_name': 'score',

}
>>> tolerances = {'pass': [1.0]}
>>> solution = pd.DataFrame ({
'video_id': ['a', 'a'],
'event': ['pass', 'pass'l],
'time': [0, 15],

b
>>> submission = pd.DataFrame ({
'video_id': ['a', 'a', 'a'l,
'event': ['pass', 'pass', 'pass'],
'score': [1.0, 0.5, 1.0],
'time': [0, 10, 14.5],
b

>>> score(solution, submission, tolerances, **column_names)
1.0

Increasing the confidence score of the false detection above the true
detections decreases the AP.

>>> submission.loc[1, 'score']l = 1.5

>>> score(solution, submission, tolerances, **column_names)
0.6666666666666666. . .

Likewise, decreasing the confidence score of a true detection below the
false detection also decreases the AP.

25

>>> submission.loc[1, 'score'] 0.5 # reset

>>> submission.loc[0, 'score'l] 0.0

>>> gcore(solution, submission, tolerances, **column_names)
0.8333333333333333. ..

We average AP scores over tolerances. Previously, the detection at 14.5
would match, but adding smaller tolerances gives AP scores where it does
not match. This results in both a FN, since the ground-truth wasn't
detected, and a FP, since the detected event matches no ground-truth.
>>> tolerances = {'pass': [0.1, 0.2, 1.0]}

>>> score(solution, submission, tolerances, **column names)
0.3888888888888888. . .

We also average over time series and over event classes.

>>> tolerances = {'pass': [0.5, 1.0], 'challenge': [0.25, 0.50]}
>>> solution = pd.DataFrame ({

'video_id': ['a', 'a', 'b'],

'event': ['pass', 'challenge', 'pass'],

.. 'time': [0, 15, 0], # restart time for new time series b
)
>>> submission = pd.DataFrame ({

'video_id': ['a', 'a', 'b'],

'event': ['pass', 'challenge', 'pass'],
'score': [1.0, 0.5, 1.0],

.. 'time': [0, 15, 0],

N)
>>> score(solution, submission, tolerances, **column_names)
1.0

By adding scoring intervals to the solution, we may choose to ignore

detections outside of those intervals.

>>> tolerances = {'pass': [1.0]}

>>> solution = pd.DataFrame ({

'video_id': ['a', 'a', 'a', 'a'l,

'event': ['start', 'pass', 'pass', 'end'],

.. 'time': [0, 10, 20, 30],

)

>>> submission = pd.DataFrame ({
'video_id': ['a', 'a', 'a'l,
'event': ['pass', 'pass', 'pass'],
'score': [1.0, 1.0, 1.0],

26

'time': [10, 20, 40],
oD
>>> score(solution, submission, tolerances, **column_names, use_scoring_intervals=True
1.0

Validate metric parameters
assert len(tolerances) > 0, "Events must have defined tolerances."
assert set(tolerances.keys()) == set(solution[event_column_name]).difference({'start',
(f"Solution column {event_column_name} must contain the same events "
"as defined in tolerances.")
assert pd.api.types.is_numeric_dtype(solution[time_column_name]),\
f"Solution column {time_column_name} must be of numeric type."

Validate submission format

for column name in [
series_id_column_name,
time_column_name,
event_column_name,
score_column_name,

if column_name not in submission.columns:
raise ParticipantVisibleError (f"Submission must have column '{column_name}'.")

if not pd.api.types.is_numeric_dtype(submission[time_column_name]) :
raise ParticipantVisibleError(
f"Submission column '{time_column_name}' must be of numeric type."
)
if not pd.api.types.is_numeric_dtype(submission[score_column_name]):
raise ParticipantVisibleError(
f"Submission column '{score_column_namel}' must be of numeric type."

Set these globally to avoid passing around a bunch of arguments
globals() ['series_id_column_name'] = series_id_column_name
globals() ['time_column_name'] = time_column_name

globals() ['event_column_name'] = event_column_name

globals() ['score_column_name'] = score_column_name

globals() ['use_scoring_intervals'] = use_scoring_intervals

return event_detection_ap(solution, submission, tolerances)

27

def filter_detections(
detections: pd.DataFrame, intervals: pd.DataFrame
) -> pd.DataFrame:
"""Drop detections not inside a scoring interval."""
detection_time = detections.loc[:, time_column_name] .sort_values().to_numpy()
intervals = intervals.to_numpy()
is_scored = np.full_like(detection_time, False, dtype=bool)

i, =0, 0

while i < len(detection_time) and j < len(intervals):
= detection_time[i]

intervals[j]

5 C
ot B

)
no

If the detection is prior in time to the interval, go to the next detection.
if time < int_.left:

i+=1
If the detection is inside the interval, keep it and go to the next detection.
elif time in int_:

is_scored[i] = True

i+=1
If the detection is later in time, go to the next interval.
else:

j+=1

return detections.loc[is_scored] .reset_index(drop=True)

def match_detections(
tolerance: float, ground_truths: pd.DataFrame, detections: pd.DataFrame
) —> pd.DataFrame:
"""Match detections to ground truth events. Arguments are taken from a common event x
detections_sorted = detections.sort_values(score_column_name, ascending=False).dropna(
is_matched = np.full_like(detections_sorted[event_column_name], False, dtype=bool)
gts_matched = set()
for i, det in enumerate(detections_sorted.itertuples(index=False)):
best_error = tolerance
best_gt = None

for gt in ground_truths.itertuples(index=False):
error = abs(getattr(det, time_column_name) - getattr(gt, time_column_name))

28

if error < best_error and gt not in gts_matched:
best_gt = gt
best_error = error

if best_gt is not None:
is_matched[i] = True
gts_matched.add(best_gt)

detections_sorted['matched'] = is_matched

return detections_sorted

def precision_recall_curve(
matches: np.ndarray, scores: np.ndarray, p: int
) —=> Tuplelnp.ndarray, np.ndarray, np.ndarray]:
if len(matches) ==
return [1], [0], []

Sort matches by decreasing confidence

idxs = np.argsort(scores, kind='stable')[::-1]
scores = scores[idxs]

matches = matches[idxs]

distinct_value_indices = np.where(np.diff (scores)) [0]
threshold_idxs = np.r_[distinct_value_indices, matches.size - 1]
thresholds = scores[threshold_idxs]

Matches become TPs and non-matches FPs as confidence threshold decreases
tps = np.cumsum(matches) [threshold_idxs]
fps = np.cumsum(~matches) [threshold_idxs]

precision = tps / (tps + fps)

precision[np.isnan(precision)] = 0

recall = tps / p # total number of ground truths might be different than total number
Stop when full recall attained and reverse the outputs so recall is non-increasing.
last_ind = tps.searchsorted(tps[-1])

sl = slice(last_ind, None, -1)

Final precision is 1 and final recall is O

29

return np.r_[precision([sl], 1], np.r_[recall[sl], 0], thresholds[sl]

def average_precision_score(matches: np.ndarray, scores: np.ndarray, p: int) -> float:
precision, recall, _ = precision_recall_curve(matches, scores, p)
Compute step integral
return -np.sum(np.diff(recall) * np.array(precision)[:-1])

def event_detection_ap(
solution: pd.DataFrame,
submission: pd.DataFrame,
tolerances: Dict[str, List[float]],
) —> float:

Ensure solution and submission are sorted properly
solution = solution.sort_values([series_id_column_name, time_column_name])
submission = submission.sort_values([series_id_column_name, time_column_name])

Extract scoring intervals.
if use_scoring_intervals:
intervals = (
solution
.query("event in ['start', 'end']")
.assign(interval=lambda x: x.groupby([series_id_column_name, event_column_name
.pivot(
index='interval',
columns=[series_id_column_name, event_column_name],
values=time_column_name,

.stack(series_id_column_name)

.swaplevel()

.sort_index()

.loc[:, ['start', 'end']l]

.apply(lambda x: pd.Interval(*x, closed='both'), axis=1)

Extract ground-truth events.
ground_truths = (

solution

.query("event not in ['start', 'end']")

30

.reset_index(drop=True)

Map each event class to its prevalence (needed for recall calculation)
class_counts = ground_truths.value_counts(event_column_name) .to_dict()

Create table for detections with a column indicating a match to a ground-truth event
detections = submission.assign(matched = False)

Remove detections outside of scoring intervals
if use_scoring_intervals:
detections_filtered = []
for (det_group, dets), (int_group, ints) in zip(
detections.groupby(series_id_column_name), intervals.groupby(series_id_column_

assert det_group == int_group
detections_filtered.append(filter_detections(dets, ints))
detections_filtered = pd.concat(detections_filtered, ignore_index=True)
else:
detections_filtered = detections

Create table of event-class x tolerance x series_id values
aggregation_keys = pd.DataFrame (
[(ev, tol, vid)
for ev in tolerances.keys()
for tol in tolerances[ev]
for vid in ground_truths[series_id_column_name] .unique()],
columns=[event_column_name, 'tolerance', series_id_column_name],

Create match evaluation groups: event-class x tolerance x series_id
detections_grouped = (
aggregation_keys
.merge(detections_filtered, on=[event_column_name, series_id_column_name], how='le
.groupby([event_column_name, 'tolerance', series_id_column_name])
)
ground_truths_grouped = (
aggregation_keys
.merge (ground_truths, on=[event_column_name, series_id_column_name], how='left')
.groupby ([event_column_name, 'tolerance', series_id_column_name])

31

Match detections to ground truth events by evaluation group
detections matched = []
for key in aggregation_keys.itertuples(index=False):
dets = detections_grouped.get_group(key)
gts = ground_truths_grouped.get_group(key)
detections_matched.append(
match_detections(dets['tolerance'].iloc[0], gts, dets)
)

detections_matched = pd.concat(detections_matched)

Compute AP per event x tolerance group
event_classes = ground_truths[event_column_name] .unique ()
ap_table = (
detections_matched
.query("event in Qevent_classes")
.groupby([event_column_name, 'tolerance']).apply(
lambda group: average_precision_score(
group['matched'].to_numpy(),
group[score_column_name] .to_numpy(),
class_counts[group[event_column_name] .iat[0]],

)
Average over tolerances, then over event classes
mean_ap = ap_table.groupby(event_column_name) .mean().sum() / len(event_classes)

return mean_ap
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import polars as pl
import datetime
from tqdm import tqdm

import plotly.express as px

from plotly.subplots import make_subplots
import plotly.graph_objects as go

tolerances = {
"onset" : [12, 36, 60, 90, 120, 150, 180, 240, 300, 360],

32

'wakeup': [12, 36, 60, 90, 120, 150, 180, 240, 300, 360]

}

column_names = {
'series_id_column_name': 'series_id',
'time_column_name': 'step',
'event_column_name': 'event',
'score_column_name': 'score',

#import data

dt_transforms = [
pl.col('timestamp').str.to_datetime(),
(pl.col('timestamp').str.to_datetime() .dt.year()-2000) .cast(pl.UInt8) .alias('year'),
pl.col('timestamp').str.to_datetime().dt.month().cast(pl.UInt8).alias('month'),
pl.col('timestamp').str.to_datetime().dt.day() .cast(pl.UInt8).alias('day"'),
pl.col('timestamp').str.to_datetime() .dt.hour().cast(pl.UInt8).alias('hour')

data_transforms = [
pl.col('anglez').cast(pl.Int16), # Casting anglez to 16 bit integer
(pl.col('enmo')*1000).cast(pl.UInt16), # Convert enmo to 16 bit uint

train_series = pl.scan_parquet('train_series.parquet').with_columns(
dt_transforms + data_transforms

)

train_events = pl.read_csv('train_events.csv').with_columns(
dt_transforms

)

test_series = pl.scan_parquet('test_series.parquet').with_columns (
dt_transforms + data_transforms

)

Getting series ids as a list for convenience
series_ids = train_events['series_id'].unique(maintain_order=True).to_list()

Removing series with mismatched counts:
onset_counts = train_events.filter(pl.col('event')=='onset').group_by('series_id').count()

33

wakeup_counts = train_events.filter(pl.col('event')=='wakeup').group_by('series_id').count

counts = pl.DataFrame({'series_id':sorted(series_ids), 'onset_counts':onset_counts, 'wakeu
count_mismatches = counts.filter(counts['onset_counts'] != counts['wakeup_counts'])

train_series = train_series.filter(~pl.col('series_id').is_in(count_mismatches['series_id'
train_events train_events.filter(~pl.col('series_id').is_in(count_mismatches['series_id'

Updating list of series ids, not including series with no non-null values.
series_ids = train_events.drop_nulls() ['series_id'].unique(maintain_order=True).to_list()

Feature Engineering start from here
features, feature_cols = [pl.col('hour')], ['hour']

for mins in [5, 30, 60*2, 60%8]
features += [
pl.col('enmo').rolling mean(12 * mins, center=True, min_periods=1).abs().cast(pl.U
pl.col('enmo').rolling max(12 * mins, center=True, min_periods=1).abs().cast(pl.UI

feature_cols += [
f'enmo_{mins}m _mean', f'enmo_{mins}m_max'

Getting first variatioms
for var in ['enmo', 'anglez']
features += [
(pl.col(var).diff().abs().rolling mean(12 * mins, center=True, min_periods=1)#*
(pl.col(var) .diff().abs().rolling max(12 * mins, center=True, min_periods=1)*1

feature_cols += [
f'{var} 1v_{mins}m mean', f'{var} 1v_{mins}m max'
id_cols = ['series_id', 'step', 'timestamp']
train_series = train series.with columns(

features
) .select(id_cols + feature_cols)

34

test_series = test_series.with_columns(
features
) .select(id_cols + feature_cols)

train dataset preparation method
def make_train_dataset(train_data, train_events, drop_nulls=False)

series_ids = train_datal['series_id'].unique(maintain_order=True).to_list()
X, y = pl.DataFrame(), pl.DataFrame()
for idx in tqdm(series_ids)

Normalizing sample features
sample = train_data.filter(pl.col('series_id')==idx).with_columns(
[(pl.col(col) / pl.col(col).std()).cast(pl.Float32) for col in feature_cols if
events = train_events.filter(pl.col('series_id')==1idx)
if drop_nulls
Removing datapoints on dates where no data was recorded
sample = sample.filter(
pl.col('timestamp').dt.date().is_in(events['timestamp'].dt.date())

X = X.vstack(sample[id_cols + feature_cols])

onsets = events.filter((pl.col('event') == 'onset') & (pl.col('step') != Nomne))['s
wakeups = events.filter((pl.col('event') == 'wakeup') & (pl.col('step') != None)) |

NOTE: This will break if there are event series without any recorded onsets or w
y = y.vstack(sample.with_columns (
sum([(onset <= pl.col('step')) & (pl.col('step') <= wakeup) for onset, wakeup
) .select('asleep')
)
y = y.to_numpy() .ravel()

return X, y

apply classifier to get event method

35

def get_events(series, classifier)
ra

Takes a time series and a classifier and returns a formatted submission dataframe.
LI |

series_ids = series['series_id'].unique(maintain_order=True).to_list()
events = pl.DataFrame(schema={'series_id':str, 'step':int, 'event':str, 'score':float}

for idx in tqdm(series_ids)

Collecting sample and normalizing features

scale_cols = [col for col in feature_cols if (col != 'hour') & (series[col].std()

X = series.filter(pl.col('series_id') == idx).select(id_cols + feature_cols) .with_
[(pl.col(col) / series[col].std()).cast(pl.Float32) for col in scale_cols]

Applying classifier to get predictions and scores
preds, probs = classifier.predict(X[feature_cols]), classifier.predict_proba(X[fea

#NOTE: Considered using rolling max to get sleep periods excluding <30 min interru
X = X.with_columns(
pl.lit(preds).cast(pl.Int8).alias('prediction'),
pl.lit(probs).alias('probability"')
)

Getting predicted onset and wakeup time steps
pred_onsets = X.filter(X['prediction'].diff() > 0)['step'].to_list()
pred_wakeups = X.filter(X['prediction'].diff() < 0)['step']l.to_list()
if len(pred_onsets) > 0

Ensuring all predicted sleep periods begin and end

if min(pred_wakeups) < min(pred_onsets)

pred_wakeups = pred_wakeups[1:]

if max(pred_onsets) > max(pred_wakeups)
pred_onsets = pred_onsets[:-1]

Keeping sleep periods longer than 30 minutes
sleep_periods = [(onset, wakeup) for onset, wakeup in zip(pred_onsets, pred_wa

36

for onset, wakeup in sleep_periods
Scoring using mean probability over period
score = X.filter((pl.col('step') >= onset) & (pl.col('step') <= wakeup))['

Adding sleep event to dataframe

events = events.vstack(pl.DataFrame() .with_columns(
pl.Series([idx, idx]).alias('series_id'),
pl.Series([onset, wakeup]).alias('step'),
pl.Series(['onset', 'wakeup']).alias('event'),
pl.Series([score, score]).alias('score')

))

Adding row id column
events = events.to_pandas().reset_index() .rename(columns={'index':'row_id'})

return events
extract from R processed testing_set and testing_pred_prob, then use ap score in python
import pandas as pd
testing_set = pd.read_csv("testing_set.csv")
testing_set_probs = pd.read_csv("testing_set_probs.csv")

series_id_column_name = 'series_id'
time_column_name = 'step'
event_column_name = 'awake'
score_column_name = 'score'

Create the solution DataFrame
solution = testing_set[[series_id_column_name, time_column_name, event_column_name]]

Convert predicted probabilities to class labels using a threshold of 0.5
The probabilities for class "1" are in the second column of testing_set_probs
predicted_labels = (testing_set_probs.iloc[:, 1] > 0.5).astype(int)

Create the submission DataFrame

submission = testing_set[[series_id_column_name, time_column_name, event_column_name]]
submission['predicted_label'] = predicted_labels # Add predicted labels
submission['score'] = testing_set_probs.iloc[:, 1] # Add the probabilities as confidence s

Handling scoring intervals if use_scoring_intervals is True
use_scoring_intervals = False # Set to False if not using scoring intervals
if use_scoring_intervals:

Example: Assuming 'start_event' and 'end_event' columns in testing_set

37

These columns should represent the intervals for scoring
solution['start_event'] = testing_set['start_event']
solution['end_event'] = testing_set['end_event']
submission['start_event'] = testing_set['start_event']
submission['end_event'] = testing_set['end_event']

solution = solution.rename(columns={'awake': 'event'})

submission = submission.rename(columns={'awake': 'event'})
solution['event'] = solution['event'] .map({0: 'onset', 1: 'wakeup'l})
submission['event'] = submission['event'].map({0O: 'onset', 1: 'wakeup'})

solution.to_csv('testing_set_solution.csv',index=False)
submission.to_csv('testing_set_submission.csv',index=False)
rf_ap_score = score(solution, submission, tolerances, **column_names)
plot2+ labs(caption = "Figureb")+

theme (plot.caption = element_text(hjust = 0.5))
plot4+ labs(caption = "Figure6")+
theme (plot.caption = element_text(hjust = 0.5))

plot(roc_obj, main=paste("ROC Curve, AUC =", round(auc_value, 6)))
mtext ("Figure7", side = 1, line = 4.15, cex = 0.8)
Printing the Confusion Matrix
print (confusionMatrix)
Printing the metrics
print (paste("Precision:", precision))
print(paste("Recall:", recall))
print(paste("F1 Score:", f1_score))
rf_feature_importance_plot+ labs(caption = "Figure8")+
theme (plot.caption = element_text(hjust = 0.5))

final_submission

An Optional Dive into GGIR Package

train_events <- read.csv("train_events.csv")

train_series <- arrow::read_parquet("Zzzs_train.parquet")
test_series <- arrow::read_parquet("test_series.parquet")
write.csv(train_series, "Zzzs_train.csv", row.names = FALSE)
write.csv(test_series, 'test_series.csv', row.names = FALSE)

library(GGIR)
#g.shell.GGIR

#- Load libraries
library(tidyverse)
library(arrow)

38

library(skimr)

library(dplyr)

library(ggplot2)

library(lubridate)

library(caret)

library(randomForest)

library(patchwork)

library (pROC)

library (purrr)

#- Read train_events and modify timestamp with lubridate

#- Read events
events <- read_csv("train_events.csv") %>%
mutate(dt = as_datetime(timestamp)) %>%
mutate(dt = dt - hours(4)) %>% mutate(hr = hour(dt)) %>%
select (-timestamp)
head (events)
#- Events counts
events %>/, count (event)
#- Sleep onset and wakeup timeline
Merge onset and wakeup data on dates
timeline data <- events %>Y%
filter(event %inJ, c("onset", "wakeup")) %>%
group_by(date = as.Date(dt)) %>%
mutate(time_minutes = hour(dt) * 60 + minute(dt))

Create a scatter plot
plotl <- ggplot(timeline_data, aes(x = date, y = time_minutes, color = event)) +
geom_point(shape = 3, alpha = 0.2) +
labs(title = "Sleep Onset and Wakeup Timeline",
x = "Date",
y = "Time of Day (minutes after midnight)") +
theme minimal() +
theme (axis.text.x = element_text(angle = 45, hjust = 1))

Calculate sleep durations and onset hour
pivot_data <- events 7>%
group_by(series_id, night) %>%
summarize (duration_minutes = (max(step) - min(step)) / 60,
onset_hour = hour(min(dt)),.groups = 'drop')

39

Calculate average sleep duration by hour of onset
average_duration_by_hour <- pivot_data %>
group_by (onset_hour) %>

summarize (avg_duration = mean(duration_minutes),.groups = 'drop')

Create a bar plot

plot2 <- ggplot(average_duration_by_hour, aes(x = onset_hour, y = avg_duration, fill = avg

geom_bar(stat = "identity") +

labs(title = "Average Sleep Duration by Hour of Onset",

x = "Hour of Sleep Onset",
y
theme minimal() +
scale_fill_gradient(low = "red", high = "green")
Order days of the week

"Average Sleep Duration (minutes)") +

ordered_days <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sun
Extract day of week and calculate sleep duration in minutes

Calculate sleep duration in minutes and extract day of the week

pivot_data <- events %>
group_by(series_id, night) %>%
summarize (duration_minutes = (max(step) - min(step)
min_datetime = min(dt),.groups = 'drop')

) / 60,
©>%

mutate(day_of_week = factor(format(min_datetime, "%A"), levels = ordered_days))

Create a box plot
plot3 <- ggplot(pivot_data, aes(x = day_of_week, y =
geom_boxplot() +
labs(title = "Box Plot of Sleep Duration by Day of
x = "Day of the Week",
y = "Sleep Duration (minutes)") +
theme_minimal() +
theme (axis.text.x = element_text(angle = 45, hjust
#- Distribution of wakeup and Distribution of onset
Filter the data for "wakeup" and "onset" events
events_wakeup <- events 7>}, filter(event == "wakeup")
events_onset <- events %>% filter(event == "onset")

Combine the filtered data into a single data frame
combined_events <- rbind(events_wakeup, events_onset)

duration_minutes, fill = day_of_week)

Week",

1))

Create the plot with density lines for "wakeup" and "onset" events

plot4 <- ggplot(combined_events, aes(x = hr, color =

40

event, fill = event)) +

geom_density(alpha = 0.5) +

labs(x = "Hour", y = "Density") +

scale_color_manual (values = c("wakeup" = "red", "onset" = "blue")) +
scale_fill_manual(values = c("wakeup" = "red", "onset" = "blue")) +
theme minimal ()

Calculate the number of events per series
events_per_series <- events >/
group_by(series_id) %>%
summarize (num_events = n())

Create a histogram for the distribution of events per series
plots <- ggplot(events_per_series, aes(x = num_events)) +
geom_histogram(bins = 30, fill = "orange", color = "black", alpha = 0.7) +

labs(title = "Distribution of Number of Events per Series",
x = "Number of Events",
y = "Number of Series") +

theme minimal ()
Most series exhibit approximately 48 events. However, there are a few series with a sign
#- Detect NA in events
events_na <- events %>/ group_by(series_id,step) %>’ filter(is.na(step))
events_na
num_na <- length(unique(events_na$series_id))
na_id <- unique(events_na$series_id)
num_na
na_id
Steps containing records with 'NA' (not available) were identified as not precise enough
#- Series_id without NA events
all_id <- unique(events$series_id)
nna_id <- setdiff(all_id,na_id)
nna_id
In this study, steps containing records with 'NA' (not available) were identified as not
#- Remove two truncated event series
trunc <- c("31011ade7c0Oa","a596ad0b82aa")
nna_id <- setdiff(nna_id,trunc)
df _nna <- tibble(nna_id) %>, rename(series_id = nna_id)
plotl <- plotl + labs(caption = "Figurel")+

theme (plot.caption = element_text(hjust = 0.5))
plot3 <- plot3 + labs(caption = "Figure 2")+
theme (plot.caption = element_text(hjust = 0.5))

41

motivate_plot <- plotl + plot3
plot_layout(nrow = 2)

motivate_plot
#- Read training data
train <- read_parquet('Zzzs_train.parquet')
head(train)
nna_train <- right_join(train,df_nna)
nna_event <- right_join(events,df_nna)
train_new <- left_join(unna_train,nna_event)
train_new_full <- right_join(nna_train,nna_event)
head(train_new_full)
training_data <- train_new_full %>7
select(-timestamp,-event,-dt,-night)
head(training_data)
#- Read testing data
test_old <- read_parquet("test_series.parquet")
Generate a few random data to enlarge the test_series, the original one only has 3 uniqu
set.seed(123)
num_rows <- 150
random_data <- data.frame(
series_id = rep("038441c925bb", num_rows),
step = 0:(num_rows-1),
timestamp = seq(from = ymd_hms("2023-12-13T22:30:00-0400"),
by = "5 sec", length.out = num_rows),
anglez = runif(num_rows, min = 0, max = 5), # Random values between 0 and 5
enmo = runif (num_rows, min = 0, max = 0.05) # Random values between 0 and 0.05

Convert timestamps to character
random_data$timestamp <- format(random_data$timestamp, format="7Y-%m-%dT%H:%M:%S-0400")

test <- rbind(test_old, random_data)

random_data <- data.frame(
series_id = rep("038491c925aa", num_rows),
step = 0:(num_rows-1),
timestamp = seq(from = ymd_hms("2020-10-13T23:45:00-0300"),
by = "5 sec", length.out = num_rows),
anglez = runif(num_rows, min = 0, max = 5), # Random values between 0 and 5

42

enmo = runif(num_rows, min = 0, max = 0.05) # Random values between O and 0.05

Convert timestamps to character
random_data$timestamp <- format(random_data$timestamp, format="7Y-%m-%dT%H:%M:%S-0500")

test <- rbind(test, random_data)

random_data <- data.frame(
series_id = rep("038491c925aa", num_rows),
step = 0:(num_rows-1),
timestamp = seq(from = ymd_hms("2021-02-13T02:36:00-0400"),
by = "5 sec", length.out = num_rows),
anglez = runif(num_rows, min = 0, max = 5), # Random values between 0 and 5
enmo = runif (num_rows, min = 0, max = 0.05) # Random values between 0 and 0.05

Convert timestamps to character
random_data$timestamp <- format(random_data$timestamp, format="7Y-%m-%dT%H:%M:%S-0500")
test <- rbind(test, random_data)

test <- test %>V

mutate(dt = as_datetime(timestamp)) %>%
mutate(dt = dt - hours(4)) %>%
mutate (hr = hour(dt)) %>Y

mutate(step = hr*60+step) %>%
select(-timestamp,-dt)

head(test)

set.seed(123)

split <- createDataPartition(training_data$awake, p = 0.8, list = FALSE)
training_set <- training_datal[split,]

training_set$awake <- as.factor(training_set$awake)

testing_set <- training data[-split,]

testing_set$awake <- as.factor(testing_set$awake)

preprocessing_method <- "standardize" # or "normalize"
preprocess_params <- preProcess(training set, method = ifelse(preprocessing_method == "st
saveRDS (preprocess_params, file = "preprocess_params.rds")
preprocessed_training_set <- predict(preprocess_params, training_set)

43

Initialize a data frame to store results
results_df <- data.frame(ntree = integer(), mtry = integer(), 00BError = numeric())

Define the range for mtry and ntree
mtry_range <- seq(l, ncol(preprocessed_training_set) - 1, by=1) # Full range for predicto
ntree_range <- seq(100, 550, by=5) # range for ntree

Loop over mtry and ntree values
for (mtry in mtry_range) {
for (ntree in ntree_range) {
set.seed(123)
model <- randomForest(awake ~ ., data = preprocessed_training_set, mtry = mtry, ntree

Extract 00B error rate
00BError <- model$err.rate[nrow(model$err.rate), "00B"]

Store results
results_df <- rbind(results_df, data.frame(ntree = ntree, mtry = mtry, O0OBError = 0OOBE

Check if results_df is empty or has NA values

if (nrow(results_df) == 0 || any(is.na(results_df$00BError))) {
stop("No data to plot. Check the random forest model training.")

b

Plot accuracy vs. mtry (plot accuracy for different mtry at a fixed ntree)

Calculate accuracy from the 00B error rate

results_df$Accuracy <- 1 - results_df$00BError

accuracy_plot <- ggplot(subset(results_df, ntree == 550), aes(x = mtry, y = Accuracy)) +
geom_line() +
geom_point () +

labs(title = "Attemptl: max experimental ntree",
x = "#Randomly Selected Predictors",
y = "Accuracy (Cross-validation)")

print(accuracy_plot)
Filter the results for mtry = 2 and mtry = 3
filtered_df <- results_df [results_df$mtry %in’ c(2, 3), 1]

Find local minima for each mtry group
local minima <- filtered df %>%

44

group_by (mtry) 7%>%
slice(which(diff(sign(diff (00BError))) == 2) + 1) %>%
ungroup ()

specific_minima <- local_minimal[5,]

label_point <- data.frame(
ntree = 335,
00BError = 0.01732673,
label = "ntree: 335\nError: 0.0173")

Plot 00B error rates for mtry = 2 and mtry = 3
oob_error_plot <- ggplot(filtered_df, aes(x = ntree, y = 00BError, color
geom_smooth() +
geom_point(data = specific_minima, aes(x = ntree, y = 00BError), color = "blue", size =
label), nudge_y = 0.0

as.factor(mtry)

geom_text(data = label_point, aes(x = ntree, y = 00BError, label
xlab("Number of Trees") +

ylab("Out-of-Bag Error Rate") +

ggtitle("Error Rate Over mtry = 2 and 3") +
scale_color_manual(values = c("red", "yellow"), labels = c('"mtry
theme_minimal ()

3", "mtry = 2")) +

print(oob_error_plot)
results_df$Accuracy <- 1 - results_df$00BError
accuracy_plot2 <- ggplot(subset(results_df, ntree == 335), aes(x = mtry, y = Accuracy)) +
geom_line() +
geom_point() +
labs(title = "Attempt2: ntree=335",
x = "#Randomly Selected Predictors",

y = "Accuracy (Cross-validation)")
print (accuracy_plot2)
accuracy_plot <- accuracy_plot+labs(caption = "Figure3.1")+theme(plot.caption = element_te
oob_error_plot <- oob_error_plot+labs(caption = "Figure4")+theme(plot.caption = element_te
accuracy_plot2 <- accuracy_plot2+labs(caption = "Figure3.2")+theme(plot.caption = element_

hyperparam_plot <- accuracy_plot+oob_error_plot+accuracy_plot2
plot_layout(nrow = 2)
hyperparam_plot
preprocessed_training_set$awake <- as.factor(preprocessed_training set$awake)
model <- randomForest(awake ~ ., data = preprocessed_training_set, ntree = 335, mtry = 3)
saveRDS (model, file = "ReducRFmodel.rds")
Calculate training accuracy

45

confusion_matrix <- model$confusion

training_accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
print(confusion_matrix)

print(paste("Training Accuracy:", training_accuracy))

oob_error <- model$err.rate[nrow(model$err.rate), "00B"]
training_oob_accuracy <- 1 - oob_error

print(paste("00B Error Rate:", oob_error))

print(paste("Training 00B Accuracy:", training_oob_accuracy))
preprocess_params <- readRDS(file = "preprocess_params.rds")

Apply the same preprocessing to the test data
preprocessed_testing_set <- predict(preprocess_params, testing_set)

Ensure that 'predict' function returns probabilities
testing_set_probs <- predict(model, preprocessed_testing_set, type = "prob")
Extract probabilities for the positive class ('1l' is the positive class)
positive_class_probs <- testing_set_probs[, "1"]

Calculate ROC object

roc_obj <- roc(preprocessed_testing_set$awake, positive_class_probs)

Calculate the AUC

auc_value <- auc(roc_obj)

print (auc_value)

Plot the ROC curve along with AUC

plot(roc_obj, main=paste("ROC Curve, AUC =", round(auc_value, 6)))
write.csv(testing_set, "testing_set.csv", row.names = FALSE)
write.csv(testing_set_probs, "testing_set_probs.csv", row.names = FALSE)

Extracting predicted class labels with a threshold. I use 0.5 here
predicted_labels <- ifelse(testing_set_probs[, "1"] > 0.5, 1, 0)

Confusion Matrix
confusionMatrix <- confusionMatrix(factor(predicted_labels), factor(preprocessed_testing_s

Printing the Confusion Matrix
print (confusionMatrix)

Precision, Recall, and F1 Score

precision <- posPredValue(factor(predicted_labels), factor(preprocessed_testing_set$awake)
recall <- sensitivity(factor(predicted_labels), factor(preprocessed_testing_set$awake))
f1_score <- 2 * ((precision * recall) / (precision + recall))

Printing the metrics
print(paste("Precision:", precision))

46

print(paste("Recall:", recall))
print(paste("F1 Score:", f1_score))
Extract feature importance
importance <- importance (model)
colnames (importance)
feature_importance <- data.frame(
Feature = rownames (importance),
Importance = importance[, "MeanDecreaseGini"]
)
Plot using ggplot2
rf_feature_importance_plot <- ggplot(feature_importance, aes(x = reorder(Feature, Importan
geom_bar(stat = "identity") +
coord_flip() + # Flips the axes for horizontal bars
xlab("Feature") +
ylab("MeanDecreaseGini") +
ggtitle("Feature Importance from Random Forest Model") +
theme_minimal ()
preprocess_params <- readRDS(file = "preprocess_params.rds")
Apply the same preprocessing to the test data
preprocessed_test <- predict(preprocess_params, test)
Predict probabilities
This returns a matrix with probabilities for each class
prob_predictions <- predict(model, newdata = preprocessed_test, type = "prob")

Determine the predicted class based on the higher probability

And extract the corresponding confidence score

testPpredicted_event <- apply(prob_predictions, 1, function(x) names(x) [which.max(x)])
test$confidence_score <- apply(prob_predictions, 1, max)

Prepare submission data frame and Write
submission <- test %>%
select(series_id, step, predicted_event, confidence_score)
write.csv(submission, "submission.csv", row.names = FALSE)
Predict probabilities
prob_predictions <- predict(model, newdata = preprocessed_test, type = "prob")
Add predicted probabilities to the test data
test$onset_confidence <- prob_predictions[,"1"]
test$wakeup_confidence <- prob_predictions[,"0"]

Determine the most likely onset and wakeup for each series_id
For each series_id, find the step with the highest confidence for onset and wakeup

47

final_selection <- test %>%

group_by(series_id) %>%

summarize (
onset_step = steplwhich.max(onset_confidence)],
onset_score = max(onset confidence),
wakeup_step = stepl[which.max(wakeup_confidence)],
wakeup_score = max(wakeup_confidence)

) %%

ungroup ()

Reshape the data for submission
final_submission <- final_selection %>
select(series_id, onset_step, onset_score, wakeup_step, wakeup_score) 7%>%
pivot_longer(
cols = c(onset_step, wakeup_step),

names_to = "event_type",

values_to = "step"
) %>
mutate(

event = ifelse(event_type == "onset_step", "onset", "wakeup"),

score = ifelse(event_type == "onset_step", onset_score, wakeup_score)
) %>

select(-event_type, -onset_score, -wakeup_score)

Assign row_id

final_submission <- final_submission %>%
mutate(row_id = row_number() - 1) %>%
select(row_id, everything())

Extract the mean values used for centering
Step_mean <- preprocess_params$mean["step"]

Write submission file
write.csv(final_submission, "final_ submission.csv", row.names = FALSE)
Filter function
Define feature columns used in the model
feature_cols <- c("series_id", "step", "anglez", "emnmo", "hr") # Include 'step' and oth

unique_series_ids<-unique(preprocessed_test$series_id)
for (series_id in unique_series_ids) {

#

#

#

Loop over each series ID

#

#

series_data <- preprocessed_test >/ filter(series_id == series_id)

48

H OH OH H HF H K EFEHHHH K HEH R HEHHEHEH KRR

+*

3}

final_

Predict events
preds <- predict(model, newdata = series_datal[feature_cols])

Detect sleep onsets and wakeups

pred_changes <- c(FALSE, diff (preds) != 0)

pred_onsets <- series_data$step[preds == 1 & pred_changes]
pred_wakeups <- series_data$step[preds == 0 & pred_changes]

Filter and score events
valid_periods <- which(pred_wakeups - pred_onsets >= 12 * 30)
if (length(valid_periods) > 0) {
for (i in valid_periods) {
onset_step <- pred_onsets[i]
wakeup_step <- pred_wakeups[i]

Adjust threshold as

score <- mean(series_data$onset_confidence[onset_step:wakeup_step], na.rm =

Add to final submission

final_submission <- rbind(final_submission, data.frame(

series_id = series_id,
onset_step = onset_step,
wakeup_step = wakeup_step,
score = score

)

submission

library(reticulate)
use_condaenv("env", required = TRUE)
"""Event Detection Average Precision

An average precision metric for event detection in time series and

video.

nnn

import numpy as np
import pandas as pd
import pandas.api.types

49

from typing import Dict, List, Tuple

class ParticipantVisibleError (Exception):
pass

Set some placeholders for global parameters
series_id_column_name = None

time_column_name = None

event_column_name = None

score_column_name = None
use_scoring_intervals = None

def score(
solution: pd.DataFrame,
submission: pd.DataFrame,
tolerances: Dict[str, List[float]],
series_id_column_name: str,
time_column_name: str,
event_column_name: str,
score_column_name: str,
use_scoring_intervals: bool = False,
) —> float:
"""Event Detection Average Precision, an AUCPR metric for event detection in
time series and video.

This metric is similar to IOU-threshold average precision metrics commonly
used in object detection. For events occuring in time series, we replace the
I0U threshold with a time tolerance.

Submissions are evaluated on the average precision of detected events,
averaged over timestamp error tolerance thresholds, averaged over event

classes.

Detections are matched to ground-truth events within error tolerances, with
ambiguities resolved in order of decreasing confidence.

Detailed Description

50

Evaluation proceeds in four steps:

1. Selection - (optional) Predictions not within a series' scoring
intervals are dropped.

2. Assignment - Predicted events are matched with ground-truth events.

3. Scoring - Each group of predictions is scored against its corresponding
group of ground-truth events via Average Precision.

4. Reduction - The multiple AP scores are averaged to produce a single
overall score.

Selection

With each series there may be a defined set of scoring intervals giving the
intervals of time over which zero or more ground-truth events might be
annotated in that series. A prediction will be evaluated only if it falls
within a scoring interval. These scoring intervals can be chosen to improve
the fairness of evaluation by, for instance, ignoring edge-cases or
ambiguous events.

It is recommended that, if used, scoring intervals be provided for training
data but not test data.

Assignment

For each set of predictions and ground-truths within the same “event x
tolerance x series_id ~ group, we match each ground-truth to the
highest-confidence unmatched prediction occurring within the allowed
tolerance.

Some ground-truths may not be matched to a prediction and some predictions
may not be matched to a ground-truth. They will still be accounted for in
the scoring, however.

Scoring

Collecting the events within each “series_id", we compute an Average
Precision score for each “event x tolerance”™ group. The average precision
score is the area under the (step-wise) precision-recall curve generated by
decreasing confidence score thresholds over the predictions. In this
calculation, matched predictions over the threshold are scored as TP and
unmatched predictions as FP. Unmatched ground-truths are scored as FN.

51

Reduction

The final score is the average of the above AP scores, first averaged over
tolerance, then over event.

Parameters

solution : pd.DataFrame, with columns:
“series_id_column_name” identifier for each time series
“time_column_name” the time of occurence for each event as a numeric type
“event_column_name” class label for each event
The solution contains the time of occurence of one or more types of
event within one or more time series. The metric expects the solution to
contain the same event types as those given in “tolerances’.
When “use_scoring_intervals == True , you may include “start”™ and “end"
events to delimit intervals within which detections will be scored.
Detected events (from the user submission) outside of these events will
be ignored.

submission : pd.DataFrame, with columns as above and in addition:
"score_column_name the predicted confidence score for the detected event

tolerances : Dict[str, List[float]]

Maps each event class to a list of timestamp tolerances used
for matching detections to ground-truth events.

use_scoring_intervals: bool, default False

Whether to ignore predicted events outside intervals delimited
by “'start'® and “'end'" events in the solution. When “False~,
the solution should not include "'start'®™ and “'end'" events.
See the examples for illustration.

52

event_detection_ap : float
The mean average precision of the detected events.

Examples

Detecting "~ 'pass'® events in football:
>>> column_names = {

'series_id_column_name': 'video_id',
'time_column_name': 'time',
'event_column_name': 'event',
'score_column_name': 'score',

}
>>> tolerances = {'pass': [1.0]}
>>> solution = pd.DataFrame ({
'video_id': ['a', 'a'],
'event': ['pass', 'pass'],
'time': [0, 15],

b
>>> submission = pd.DataFrame ({
'video_id': ['a', 'a', 'a'l,
'event': ['pass', 'pass', 'pass'],
'score': [1.0, 0.5, 1.0],
'time': [0, 10, 14.5],
b

>>> score(solution, submission, tolerances, **column_names)
1.0

Increasing the confidence score of the false detection above the true
detections decreases the AP.

>>> submission.loc[1, 'score'] = 1.5

>>> score(solution, submission, tolerances, **column_names)
0.6666666666666666. . .

Likewise, decreasing the confidence score of a true detection below the
false detection also decreases the AP.

>>> submission.loc[1, 'score']l] = 0.5 # reset

>>> submission.loc[0, 'score']l = 0.0

>>> score(solution, submission, tolerances, **column_names)
0.8333333333333333. ..

We average AP scores over tolerances. Previously, the detection at 14.5

53

would match, but adding smaller tolerances gives AP scores where it does
not match. This results in both a FN, since the ground-truth wasn't
detected, and a FP, since the detected event matches no ground-truth.
>>> tolerances = {'pass': [0.1, 0.2, 1.0]}

>>> score(solution, submission, tolerances, **column_names)
0.3888888888888888. . .

We also average over time series and over event classes.

>>> tolerances = {'pass': [0.5, 1.0], 'challenge': [0.25, 0.50]}
>>> solution = pd.DataFrame ({

'video_id': ['a', 'a', 'b'],

'event': ['pass', 'challenge', 'pass'],

.. 'time': [0, 15, 0], # restart time for new time series b
)
>>> submission = pd.DataFrame ({

'video_id': ['a', 'a', 'b'],

'event': ['pass', 'challenge', 'pass'],
'score': [1.0, 0.5, 1.0],

.. 'time': [0, 15, 0],

N
>>> gcore(solution, submission, tolerances, **column_names)
1.0

By adding scoring intervals to the solution, we may choose to ignore
detections outside of those intervals.

>>> tolerances = {'pass': [1.0]}

>>> solution = pd.DataFrame ({

'video_id': ['a', 'a', 'a', 'a'l],

'event': ['start', 'pass', 'pass', 'end'],

.. 'time': [0, 10, 20, 30],

RS
>>> submission = pd.DataFrame ({
'video_id': ['a', 'a', 'a'l,
'event': ['pass', 'pass', 'pass'],
'score': [1.0, 1.0, 1.0],

.. 'time': [10, 20, 40],

RS
>>> score(solution, submission, tolerances, **column_names, use_scoring_intervals=True
1.0

54

Validate metric parameters
assert len(tolerances) > 0, "Events must have defined tolerances."
assert set(tolerances.keys()) == set(solution[event_column_name]).difference({'start',
(f"Solution column {event_column_name} must contain the same events "
"as defined in tolerances.")
assert pd.api.types.is_numeric_dtype(solution[time_column_name]),\
f"Solution column {time_column_name} must be of numeric type."

Validate submission format

for column_name in [
series_id_column_name,
time_column_name,
event_column_name,
score_column_name,

if column_name not in submission.columns:
raise ParticipantVisibleError(f"Submission must have column '{column_name}'.")

if not pd.api.types.is_numeric_dtype(submission[time_column_name]) :
raise ParticipantVisibleError(
f"Submission column '{time_column_name}' must be of numeric type."
)
if not pd.api.types.is_numeric_dtype(submission[score_column_name]):
raise ParticipantVisibleError(
f"Submission column '{score_column_namel}' must be of numeric type."

Set these globally to avoid passing around a bunch of arguments
globals() ['series_id_column_name'] = series_id_column_name
globals() ['time_column_name'] = time_column_name

globals() ['event_column_name'] = event_column_name

globals() ['score_column_name'] = score_column_name

globals() ['use_scoring intervals'] = use_scoring_intervals

return event_detection_ap(solution, submission, tolerances)
def filter_detections(
detections: pd.DataFrame, intervals: pd.DataFrame

) —> pd.DataFrame:
"""Drop detections not inside a scoring interval."""

55

detection_time = detections.loc[:, time_column_name].sort_values().to_numpy()
intervals = intervals.to_numpy()
is_scored = np.full_like(detection_time, False, dtype=bool)

i, §j=0,0

while i < len(detection_time) and j < len(intervals):
time = detection_timel[i]
int_ = intervals[j]

If the detection is prior in time to the interval, go to the next detection.
if time < int_.left:

i+=1
If the detection is inside the interval, keep it and go to the next detection.
elif time in int_:

is_scored[i] = True

i+=1
If the detection is later in time, go to the next interval.
else:

j+=1

return detections.loc[is_scored] .reset_index(drop=True)

def match_detections(
tolerance: float, ground_truths: pd.DataFrame, detections: pd.DataFrame
) —> pd.DataFrame:
"""Match detections to ground truth events. Arguments are taken from a common event x
detections_sorted = detections.sort_values(score_column_name, ascending=False) .dropna(
is_matched = np.full_like(detections_sorted[event_column_name], False, dtype=bool)
gts_matched = set()
for i, det in enumerate(detections_sorted.itertuples(index=False)):
best_error = tolerance
best_gt = None

for gt in ground_truths.itertuples(index=False):
error = abs(getattr(det, time_column_name) - getattr(gt, time_column_name))
if error < best_error and gt not in gts_matched:
best_gt = gt
best_error = error

if best_gt is not None:

56

is_matched[i] = True
gts_matched.add(best_gt)

detections_sorted['matched'] = is_matched

return detections_sorted

def precision_recall_curve(

matches: np.ndarray, scores: np.ndarray, p: int

) —> Tuplelnp.ndarray, np.ndarray, np.ndarray]:

def

if len(matches) ==
return [1], [0], []

Sort matches by decreasing confidence

idxs = np.argsort(scores, kind='stable')[::-1]
scores = scores[idxs]

matches = matches[idxs]

distinct_value_indices = np.where(np.diff (scores)) [0]
threshold_idxs = np.r_[distinct_value_indices, matches.size - 1]
thresholds = scores[threshold_idxs]

Matches become TPs and non-matches FPs as confidence threshold decreases
tps = np.cumsum(matches) [threshold_idxs]
fps = np.cumsum(~matches) [threshold_idxs]

precision = tps / (tps + fps)
precision[np.isnan(precision)] = 0
recall = tps / p # total number of ground truths might be different than total number

Stop when full recall attained and reverse the outputs so recall is non-increasing.
last_ind = tps.searchsorted(tps[-1])

sl = slice(last_ind, None, -1)

Final precision is 1 and final recall is O

return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl]

average_precision_score(matches: np.ndarray, scores: np.ndarray, p: int) -> float:
precision, recall, _ = precision_recall_curve(matches, scores, p)

57

Compute step integral
return -np.sum(np.diff(recall) * np.array(precision)[:-1])

def event_detection_ap(
solution: pd.DataFrame,
submission: pd.DataFrame,
tolerances: Dict[str, List[float]],
) -> float:

Ensure solution and submission are sorted properly
solution = solution.sort_values([series_id_column_name, time_column_name])
submission = submission.sort_values([series_id_column_name, time_column_name])

Extract scoring intervals.
if use_scoring_intervals:
intervals = (

solution

.query("event in ['start', 'end']l")

.assign(interval=lambda x: x.groupby([series_id_column_name, event_column_name
.pivot(

index='interval',
columns=[series_id_column name, event column_name],
values=time_column_name,

.stack(series_id_column_name)

.swaplevel()

.sort_index()

.loc[:, ['start', 'end']]

.apply(lambda x: pd.Interval(*x, closed='both'), axis=1)

Extract ground-truth events.
ground_truths = (
solution
.query("event not in ['start', 'end']")
.reset_index(drop=True)

Map each event class to its prevalence (needed for recall calculation)
class_counts = ground_truths.value_counts(event_column_name) .to_dict()

58

Create table for detections with a column indicating a match to a ground-truth event
detections = submission.assign(matched = False)

Remove detections outside of scoring intervals
if use_scoring_intervals:
detections_filtered = []
for (det_group, dets), (int_group, ints) in zip(
detections.groupby(series_id_column_name), intervals.groupby(series_id_column_

assert det_group == int_group
detections_filtered.append(filter_detections(dets, ints))
detections_filtered = pd.concat(detections_filtered, ignore_index=True)
else:
detections_filtered = detections

Create table of event-class x tolerance x series_id values
aggregation_keys = pd.DataFrame (
[(ev, tol, vid)
for ev in tolerances.keys()
for tol in tolerances[ev]
for vid in ground_truths[series_id_column_name] .unique()],
columns=[event_column_name, 'tolerance', series_id_column_name],

Create match evaluation groups: event-class x tolerance x series_id
detections_grouped = (
aggregation_keys
.merge (detections_filtered, on=[event_column_name, series_id_column_name], how='le
.groupby([event_column_name, 'tolerance', series_id_column_name])
)
ground_truths_grouped = (
aggregation_keys
.merge (ground_truths, on=[event_column_name, series_id_column_name], how='left')
.groupby([event_column_name, 'tolerance', series_id_column_name])
)
Match detections to ground truth events by evaluation group
detections_matched = []
for key in aggregation_keys.itertuples(index=False):
dets = detections_grouped.get_group (key)
gts = ground_truths_grouped.get_group (key)
detections_matched.append(

59

match_detections(dets['tolerance'].iloc[0], gts, dets)
)

detections_matched = pd.concat(detections_matched)

Compute AP per event x tolerance group
event_classes = ground_truths[event_column_name] .unique ()
ap_table = (
detections_matched
.query("event in Qevent_classes")
.groupby([event_column_name, 'tolerance']).apply(
lambda group: average_precision_score(
group['matched'].to_numpy(),
group[score_column_name] .to_numpy(),
class_counts[group[event_column_name] .iat[0]],

)
Average over tolerances, then over event classes
mean_ap = ap_table.groupby(event_column_name) .mean().sum() / len(event_classes)

return mean_ap
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import polars as pl
import datetime
from tqdm import tqdm

import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go

tolerances = {
"onset" : [12, 36, 60, 90, 120, 150, 180, 240, 300, 360],
'wakeup': [12, 36, 60, 90, 120, 150, 180, 240, 300, 360]

column_names = {
'series_id_column_name': 'series_id',
'time_column_name': 'step',

60

'event_column_name': 'event',
'score_column_name': 'score',

#import data

dt_transforms = [
pl.col('timestamp').str.to_datetime(),
(pl.col('timestamp').str.to_datetime() .dt.year()-2000).cast(pl.UInt8).alias('year'),
pl.col('timestamp').str.to_datetime().dt.month().cast(pl.UInt8).alias('month'),
pl.col('timestamp').str.to_datetime().dt.day() .cast(pl.UInt8).alias('day"'),
pl.col('timestamp').str.to_datetime().dt.hour().cast(pl.UInt8).alias('hour')

data_transforms = [
pl.col('anglez') .cast(pl.Int16), # Casting anglez to 16 bit integer
(pl.col('enmo')*1000) .cast(pl.UInt16), # Convert enmo to 16 bit uint

train_series = pl.scan_parquet('train_series.parquet').with_columns(
dt_transforms + data_transforms

)

train_events = pl.read_csv('train_events.csv').with_columns/(
dt_transforms

)

test_series = pl.scan_parquet('test_series.parquet').with_columns(
dt_transforms + data_transforms

)

Getting series ids as a list for convenience
series_ids = train_events['series_id'].unique(maintain_order=True) .to_list()

Removing series with mismatched counts:
onset_counts = train_events.filter(pl.col('event')=='onset').group_by('series_id').count()

wakeup_counts = train_events.filter(pl.col('event')=="'wakeup').group_by('series_id').count

counts = pl.DataFrame({'series_id':sorted(series_ids), 'onset_counts':onset_counts, 'wakeu
count_mismatches = counts.filter(counts['onset_counts'] != counts['wakeup_counts'])

train_series = train_series.filter(~pl.col('series_id').is_in(count_mismatches['series_id'

61

train_events = train_events.filter(~pl.col('series_id').is_in(count_mismatches['series_id'

Updating list of series ids, not including series with no non-null values.
series_ids = train_events.drop_nulls() ['series_id'].unique(maintain_order=True).to_list()

Feature Engineering start from here
features, feature_cols = [pl.col('hour')], ['hour']

for mins in [5, 30, 60%*2, 60%8]
features += [
pl.col('enmo').rolling mean(12 * mins, center=True, min_periods=1).abs().cast(pl.U
pl.col('enmo') .rolling max(12 * mins, center=True, min_periods=1).abs().cast(pl.UI

feature_cols += [
f'enmo_{mins}m_mean', f'enmo_{mins}m_max'

Getting first variations
for var in ['enmo', 'anglez']
features += [
(pl.col(var) .diff().abs().rolling mean(12 * mins, center=True, min_periods=1)#
(pl.col(var) .diff().abs() .rolling max(12 * mins, center=True, min_periods=1)*1

feature_cols += [
f'{var}_1v_{mins}m _mean', f'{var}_ 1v_{mins}m_max'

id_cols = ['series_id', 'step', 'timestamp']

train_series = train_series.with_columns (
features

) .select(id_cols + feature_cols)

test_series = test_series.with_columns(
features

) .select(id_cols + feature cols)

train dataset preparation method
def make_train_dataset(train_data, train_events, drop_nulls=False)

62

series_ids = train_datal['series_id'].unique(maintain_order=True).to_list()
X, y = pl.DataFrame(), pl.DataFrame()
for idx in tqdm(series_ids)

Normalizing sample features
sample = train_data.filter(pl.col('series_id')==idx).with_columns (
[(pl.col(col) / pl.col(col).std()).cast(pl.Float32) for col in feature_cols if

events = train_events.filter(pl.col('series_id')==idx)

if drop_nulls
Removing datapoints on dates where no data was recorded
sample = sample.filter(
pl.col('timestamp').dt.date().is_in(events['timestamp'].dt.date())

X = X.vstack(sample[id_cols + feature_cols])

onsets = events.filter((pl.col('event') == 'onset') & (pl.col('step') != None))['s
wakeups = events.filter((pl.col('event') == 'wakeup') & (pl.col('step') != None)) |

NOTE: This will break if there are event series without any recorded onsets or w
y = y.vstack(sample.with_columns (
sum([(onset <= pl.col('step')) & (pl.col('step') <= wakeup) for onset, wakeup
) .select('asleep')
)

y = y.to_numpy() .ravel()
return X, y

apply classifier to get event method
def get_events(series, classifier)

Takes a time series and a classifier and returns a formatted submission dataframe.
LI |

series_ids = series['series_id'].unique(maintain_order=True).to_list()
events = pl.DataFrame(schema={'series_id':str, 'step':int, 'event':str, 'score':float}

63

for idx in tqdm(series_ids)

Collecting sample and normalizing features

scale_cols = [col for col in feature_cols if (col != 'hour') & (series[col].std()

X = series.filter(pl.col('series_id') == idx).select(id_cols + feature_cols).with_
[(pl.col(col) / series[col].std()).cast(pl.Float32) for col in scale_cols]

Applying classifier to get predictions and scores
preds, probs = classifier.predict(X[feature_cols]), classifier.predict_proba(X[fea

#NOTE: Considered using rolling max to get sleep periods excluding <30 min interru
X = X.with_columns(
pl.lit(preds).cast(pl.Int8).alias('prediction'),
pl.lit(probs).alias('probability"')
)

Getting predicted onset and wakeup time steps
pred_onsets = X.filter(X['prediction'].diff() > 0)['step'].to_list()
pred_wakeups = X.filter(X['prediction'].diff() < O)['step']l.to_list()

if len(pred_onsets) > 0 :

Ensuring all predicted sleep periods begin and end
if min(pred_wakeups) < min(pred_onsets)
pred_wakeups = pred_wakeups[1:]

if max(pred_onsets) > max(pred_wakeups)
pred_onsets = pred_onsets[:-1]

Keeping sleep periods longer than 30 minutes
sleep_periods = [(onset, wakeup) for onset, wakeup in zip(pred_onsets, pred_wa

for onset, wakeup in sleep_periods :
Scoring using mean probability over period
score = X.filter((pl.col('step') >= onset) & (pl.col('step') <= wakeup))['

Adding sleep event to dataframe

events = events.vstack(pl.DataFrame() .with_columns/(
pl.Series([idx, idx]).alias('series_id'),
pl.Series([onset, wakeup]).alias('step'),

64

pl.Series(['onset', 'wakeup']).alias('event'),
pl.Series([score, score]).alias('score')

))

Adding row id column
events = events.to_pandas().reset_index() .rename(columns={'index': 'row_id'})

return events
extract from R processed testing_set and testing_pred_prob, then use ap score in python
import pandas as pd
testing_set = pd.read_csv("testing_set.csv")
testing_set_probs = pd.read_csv("testing set_probs.csv")

series_id_column_name = 'series_id'
time_column_name = 'step'
event_column_name = 'awake'
score_column_name = 'score'

Create the solution DataFrame
solution = testing_set[[series_id_column_name, time_column_name, event_column_name]]

Convert predicted probabilities to class labels using a threshold of 0.5
The probabilities for class "1" are in the second column of testing_set_probs
predicted_labels = (testing_set_probs.iloc[:, 1] > 0.5).astype(int)

Create the submission DataFrame

submission = testing_set[[series_id_column_name, time_column_name, event_column_name]]
submission['predicted_label'] = predicted_labels # Add predicted labels
submission['score'] = testing_set_probs.iloc[:, 1] # Add the probabilities as confidence s

Handling scoring intervals if use_scoring_intervals is True

use_scoring_intervals = False # Set to False if not using scoring intervals

if use_scoring_intervals:
Example: Assuming 'start_event' and 'end_event' columns in testing_set
These columns should represent the intervals for scoring
solution['start_event'] = testing_set['start_event']
solution['end_event'] = testing_set['end_event']
submission['start_event'] = testing_set['start_event']
submission['end_event'] = testing_set['end_event']

solution = solution.rename(columns={'awake': 'event'})
submission = submission.rename(columns={'awake': 'event'})

65

solution['event'] = solution['event'].map({0: 'onset', 1: 'wakeup'})
submission['event'] = submission['event'].map({0: 'onset', 1: 'wakeup'})
solution.to_csv('testing set_solution.csv',index=False)
submission.to_csv('testing_set_submission.csv',index=False)

rf_ap_score = score(solution, submission, tolerances, **column_names)
plot2+ labs(caption = "Figure5")+

theme (plot.caption = element_text(hjust = 0.5))
plot4+ labs(caption = "Figure6")+
theme (plot.caption = element_text(hjust = 0.5))

plot(roc_obj, main=paste("ROC Curve, AUC =", round(auc_value, 6)))
mtext ("Figure7", side = 1, line = 4.15, cex = 0.8)
Printing the Confusion Matrix
print (confusionMatrix)
Printing the metrics
print(paste("Precision:", precision))
print(paste("Recall:", recall))
print(paste("F1 Score:", f1_score))
rf_feature_importance_plot+ labs(caption = "Figure8")+
theme (plot.caption = element_text(hjust = 0.5))

final_submission

An Optional Dive into GGIR Package

train_events <- read.csv("train_events.csv")

train_series <- arrow::read_parquet("Zzzs_train.parquet")
test_series <- arrow::read_parquet("test_series.parquet")
write.csv(train_series, "Zzzs_train.csv", row.names = FALSE)
write.csv(test_series, 'test_series.csv', row.names = FALSE)

library (GGIR)
#g.shell.GGIR

66

	Introduction
	Methodology
	Results

	Conclusion
	References
	Appendix
	Appendix A: Additional Dataset Details
	Detailed Dataset Information

	Appendix B: Additional Plots
	Appendix C: Tests on A Small Sample Data
	Appendix D: Code Details

